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MORE PRECISE CALCUIATION OF THE COEFFICIENTS OF HEAT
EXCHANGE BETWEEN A GAS AND SUSPENIED PARTICIES
BY THE APPLICATION OF THE METHOD OF

HEAT OF BOURDARY IATRR

By L. I. Budrajpshev - T’-"’JI"‘ ! »I{' quj
Tribro-lear
Pranslated by M., D. Friedman
Ames Aeronautical Iaboratory
Moffett Fleld, California

To study the process of evaporation of an ato;t?ized fluid (or dry
atomized material) it is necessary, :: the first a.co:;r:se», to knov the
coefflicient of heat transfer o from the gas to the particles of the atom-
ized fluld or materisl, By defining the coefficiemt of bheat exchange from
the gas to ;Ea body of spherical form in different ranges of variation of
criteria of Reynolds is devoted a seriles of experimental works, of which
note the following: Lyakhovski,' Loitzyanski and Schwab ,2 Virubov,
Chukhanov and Shapatm¢ and Frisling.® If the experimental works with
respect to this questlon occupy evident place, then the problems of deter—
mining the coefficient of heat exchange from the gas to a spherical body
1 studied very little and in the literature there occurs a limited amount
nf theoretical investigation.

Boussinesq solved the problem of a cooling sphere with infinite heat
conductivity in a gas stream having a velocity potentisl field, w:t;;
of which this vork bas omly methodological interest, and mo practical
application,

The theory of Nueselt® deserves attention, for the heat exchange
betveen a gas and particles of very small size, therefore its details are .

enttbed,
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Lot us denote
4  particle diameter, meters
D diameter of the gas ‘aphara surrounding the particle, meters
Ag coefficient of heat conluctiom of the gas ( i-:w%

ty temperature of gas, %
ty temperature of particle, °C,
For particles whose diameter is less than 0,5 mm the temperature dif-

ference between the surface and the middle of the particle is negligibly

small, The amount of heat, transmitted due to heat conduction through the

gpherical layer (see flg.) is determined from the vell-lmown relatiom:

On the other hand,

Q = axd® (tg-ty)

Equating (1) and (2) we obtain the Nusselt criteria

od 2
mﬂm.
W 1-

D

The thicknese of the gms sphere is
» D4
2

o3

7
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(2)



hence
% ST
1 4 -
4
Substituting in (3) ve obtain
¥ue2 + % (%)

Folloving Russelt's no‘bation; ve vill comsider the sige of the ps sphere

enclosing the particle very large in comparisom to the size of the particle
itself, and therefore from equation (%) we obtain

‘\

Bu =2 (5)

In other woards, Nusselt, to calculate the coefficient of heat exchange
from & @88 to a particle of very small size, reduced the problem to the
vure heat conduction through a bhaelf sphere whose ocutside diameter in the
calculations wvas assumed large, This assumption may be considered correct
only in the case when the relative velocity of the particle in the gas
stream is practically zero, In other cases, application of formila (5)
yields considsrable error, vhich amount becomes extremely large vhen the
Reynold's criteria is larger than ome,

In the present paper is copsidered applicatiom of the method of heat
of the boundary layer,introduced by G. N. Kruzhilin” to the more accurate
Nusselt theory for the streamlines of a gas stream of a ball in the region
of variation of Reynelds number from O to 100, characteristic for a disper—
sive system in a dry place, vorking with the scattering principle,

HEiller,B on the basis of studles of streamlines of a sphere in a
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hydrodynamic regime, showed that for the value of Reynclds mmber Re = 100

the reglom of vortex formation in the neighborhood of a rear critical point

is comperatively smsll, On the dasis of this without large error we will

assume, through the wriatien of Reynolds number from © to 100, that the

gtreamlines of a sphere are without bresks.

5wl se wevﬁ' We Asdume
i Gs o —;fhs—f?sﬁmm sssumption sistes.that the thickness of a hydrodynamic

i
:

layer 5, near the surface of a sphere equals the thickness of heat of the
boundary layer ©Oa,

In viev of the symmetry of the streamlines of a body the consideratioms
are limited to the axi-gymmetrical problem,

In the case of a body of revolution, the equation of heal balance for
an element of heat of the boundary layer along 4§ leads to the integral

9
relation,

Bz
%U ws(l-—z’—;) zldyJaf‘;(%)y:o 2 (6)

0
Here:
+ temperature at a given point of the stream, reckomed from the tempere-
ture on the surface of the sphere
to temperature of the strean at a distance from the streamlines of the hody
wg projection of the velocity in the direction tangemt to the gemeratrix of

the body of revolution

a  coefficient of temperature conduction of the gas (M7/deg)
z; radius of an element of surface, normal to it

z radius of the body of revolution
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The following relaticn exists betveen the radii gz and 2,

Zy %2 +ycos 8

sen the tangent and the generatrix of the body of revolu—
tion and the lomgitudinal axis of the body,
Inasmich as for a sphere

cos 0 = cos(? --q>>== gin @

and aleo taking into account that

4 g =2
zwﬁsinCP a8 gdq)

then ve cbhain

Bs _
2 {stn cpf Vg (1-—-}-)(1 +-2—Z> dy} ==_g‘~§;—<-a-§ sin @ (1)
do A to d 2t, ayy__ol
or ‘
w .
B lgm 22 M ( X <.d.. ?2’.)1 L)}-‘i.(?ﬁ) in® (8
mi}n ;3'/0 8 t 52*82 B 2t, \Oy, y=osn (8)

Hore ¢ 1is the nopdimensiomal angular coordinate on the generator of
the sphere,

Iet us assume that the field of temperature drop and velocity drop in

the heat of the boumdary layer 1s defined by the respective polyncmials*®

L) o) ()
£es() (&)
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vhere v 18 the stream velocity on the outer boundary of the heat of the
boundary layer.

Having equations (9) and (10), with the aid of the integral relatioms
(7) or (8) 1t is possible to calculate the thickness Bz of the heat of
the boundary layer.

Usually in the solution of a similar problem for simplificatiom, the
camponent <%§ > is neglected a8 compared to one. This assumption isn't
possible in our case since in the region of the boundery studied, the wvari-
ation of Reynclds mumber of thickness of the boundary layer is a quanbtity
of the order of the radius of the sphere,

If this observation is teken into accoumt; then we obtain from the

integral relation (8) with the aid of (2) and (10):

2
3)
52 & [w §in0 .-3.-<o.08 +0.11 -‘L> } =2 5in® (11)
4 dg a® B2/ a

| This equation belongs to & type of nonlinear differential equations
with variable coefficients solvable by the approximeste method of numerical
integratiom,
Let us reducen g.nather simple method the integral equation (11), based

wWith
on the lav of sume: 0,08 + 0,11 & factor equels 0.15 E;L‘ Fer this rule
82 2
the equation (11) becomes linear and eapily integrable,

Actually, in the investigated regiom of wariation of Reynolds mumber
2

B
from 0 to 100 as the ratio -a%- varies from 0.5 to ©; at the same time

the quantity 4. varies from O to 2, Therefore, the sum equal to

2
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5,08 4+ 0,11 —fL will vary in value from 0,08 to 0,30, Comsequently with-
et

out large orrur in the finite result it is possible to replace this scum

by & factor 0,1% g.... Then the equation (11) becomes

2

bp & [w 52 min cp} - 5,66 Lotn
¢ d9 & 3

Integrating, we obtain

B2 £( )
d  ppif2 get/2

where
% CPW 2 /2 e
f(CP) = 3,65 W[[“T sin (Pd(PJ (.;.4_;)

Here W, 1s the velocity of the stream st a distance from the streamline
of the comtour,
The value of the velocity on the outer boumdary of the heat of the

boundary layer may be determined from the following relation !

\\;'Tf;-g-sincp

Substituting Iin (13) ve obtain

/ cos®
a§.--coa 9 + 3

£ = 2,68 —

(o) S e

herefore (12) ylelds

43
L =0.336 Bin 9 (14)

"" /;;:m coe® + am;gf..se
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The average value of the ratio <§;> for the streamline of s sphere

w11l bes

<§”> < )dﬂ f( >*ﬁ¢$‘@ ori/e gt/2

f:a;umacp

‘Substituting here (14) and integrating, we find:

<§-> = 0,388 m»‘/g Re"/”" (15)
B2

Ahen
Since &h the copdition S m ?’w; from ( 4) vith the ald of (15) ve finmally
obtain

Fu =2+ 0,388 ?r‘/"’ }w"/a (16)

Assuming for air Pr = 0,722%2, ve cbtain

Fu =2+ 0,33 Ra’“/g (27)

Comparison of the obtained equation (17) vith experiments of Fruesling
is reproduced in the table, Eere also is reproduced the Kusselt oriteria,

calculated by mesns of the Lykhovsky equation.'

Re Calculated value of Nu
Frossling's Imhmsky‘s Equation
Data 17

0 2,000 2.290 2,000
1l 2.25% 2,290 2.330
10 2,790 3,344 3,040
50 3.770 h,880 4,330
100 k,%00 6,680 54300
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CONCLUSIONS

From comsidering the table ve may conclude:

1. Equation (17) gives walues which ave found detween Frossling's
data, the lover limit, and the Iyskovsky data representing the upper limit
of the Ruscelt criteria, |

It is interesting to note that in the regiom of variation of Reynolds
number from 10 to 100 equation (17) vields a result close to the arithmetic
mean of the two opposite boundaries,

2. Neglect of the region of vortex formation in the neighborhood of
the rear critical point, as expected, led to lover walues of the Russelt
eriteria in comparison to the datas of Lyskowsky, Divergence in the results
grows with increasing nmumerical value of Reynolds nmumber. .

In conclusion note the close coincidence of the calculated Nusselt
criteria datae by equaticm {17) with its calculation by the eguatiomn
Klyachko obtained'® starting fram completely different assumptions, This
equation has this form

2/3

Nu=2+ 0.16 Re {(18)
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